
WHITE PAPER

Emulating Code
with Unicorn

2Emulating Code with Unicorn

WHITE PAPER

Introduction

When analyzing a piece of malware, or reversing a CTF challenge, it’s
common to find functions that are implementing a given algorithm
that you want to apply to arbitrary data. Common examples can be
de-obfuscating strings, computing a CRC, decompressing a custom
compression routine, etc. Potential ways to go about it is to either
reverse the algorithm and re-implement it yourself, or maybe follow the
YOLO approach and click around in a debugger, manually feeding data
to the processing code. But what if there were an in-between, perhaps
the ability to create a standalone script that performs the desired task
without having to painstakingly reverse engineer the algorithm? What
if there was something that could save us from the manual effort of
running questionable code inside a debugger to directly execute the
processing code? This mythical solution is real and is called Unicorn
Engine. Based on QEMU, it will emulate the code you provide. With
bindings to many different scripting languages, you can leverage its
horsepower from your favorite scripting environment. In this Tools and
Techniques article, we will be relying on Python 3 to solve some of these
challenges. Buckle up buckaroos and let’s go on a ride with this powerful
tool.

Getting Started

You can see from the download webpage that you have many options to
install Unicorn. The most straight forward is to run:

pip install unicorn

From there you can make sure everything works as expected by running
a simple script such as:

https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/download/

3Emulating Code with Unicorn

WHITE PAPER

The code above initializes Unicorn in a such a way that it will be ready to
execute x86-32 code. We have added some extra fluff such as pre-
allocating space for heap and stack as eventually our goal is to execute
whole functions.

We can now run the equivalent of a hello world:

4Emulating Code with Unicorn

WHITE PAPER

Emulating real life code

Emulating a Hello World is a good start, but what about a real-life
scenario? The following screenshot is taken from a piece of malware:

The code above does something fairly standard with malware: it slowly
builds onto the stack the blobs it is going to process. In this case, this
is encrypted data that will require more processing, but more often
than not, it might directly be strings. This is done in such a way to avoid
detection by an antivirus and/or making it harder for a reverser to spot
interesting strings directly in the binary.

In order to tackle this process efficiently, a good approach is as follow:

1. Load the binary at the same address as it is showing in your reversing
tool

2. Make sure the stack is set up properly (as we do in the init_mu code):

 � Map a memory range for the stack

 � Set ESP/EBP accordingly

 � It is preferable to have EBP higher in memory than ESP to have a
stack frame ready (EBP = ESP + 0x200 for example).

3. Set EIP to the beginning of the code you want to emulate.

4. Set the end of the emulation at the end of the code building the data
on the stack. Note: if there are control flow changes (conditional jumps
and function calls) this might lead unexpected complications, some
addressed below.

5Emulating Code with Unicorn

WHITE PAPER

5. Read the memory back from Unicorn and get the data.

Implemented in Python, it looks like this:

If you are curious about the offsets chosen at the end of the function,
this is because in our malware example, the data is split in three different
blobs, which we replicated in the script. For the sake of completeness,
here’s a screenshot of the malware code doing the split:

6Emulating Code with Unicorn

WHITE PAPER

Going Further

Emulating function calls

I’d like to share a couple of extra pointers to make life easier when it
comes to applying this technique to a real-life scenario. Something you
might encounter is a desire to emulate a function call. To do so, there are
two things to keep in mind. First, you need to be aware of the relevant
calling convention being used (i.e., do you need to push arguments
onto the stack, or do you need to set appropriate registers?). This can
be figured out by simply looking at the code invoking the function of
interest and following the same pattern. The other important caveat is
that if the function calls other functions, as the complexity grows, there
is a greater risk of executing code that will try to access something not
initialized and/or call libraries that are not mapped. We will discuss in the
next section a potential way to mitigate some of this but be aware that
complexity is not your friend in this scenario.

 A useful trick when it comes to writing an emulation script that relies on
invoking functions is to implement simple stack management to make
code more legible. For instance, you can implement custom push/pop
functions that will enable your code to operate at the proper layer of
abstraction, as opposed to constantly managing the stack manually.

Here’s how this can be done in python:

The code above leverages the fact that the Unicorn engine “knows”
the value of ESP and updates it accordingly. Here we assume a push/
pop operates on DWORDs, and increment/decrement the stack by 4; this
should be adapted for other architectures (e.g., push QWORD in x64).

Intercepting library calls

One of the limitations described previously is when the code is
referencing shared libraries and other API calls. Short of re-implementing
a PE/ELF loader and emulating the whole binary, a reasonable approach
is to intercept these function calls in our script and re-implement the
intended behavior or something close enough to serve our purpose. A
common example would be heap management functions; for instance:
malloc and free, and their equivalents.

7Emulating Code with Unicorn

WHITE PAPER

First, we can implement a generic interception framework. To do so,
we can either overwrite an existing instruction with the “breakpoint
opcode” (on x86 that would be 0xCC) or just trace each instruction being
executed, while keeping track in either case of which callback function
we want to execute if the instruction is ever hit (when EIP == address).
On hit, we execute the handler instead of the original code, and let the
handler decide how to resume execution. For example, here’s how we
implement this in Python:

Then, leveraging this framework, we can implement basic heap
management to replace malloc/free. It doesn’t need to be robust; as
long as we provide memory that we have mapped and is not being
used elsewhere, we likely don’t need to implement a full-fledged heap
management framework with free lists and such. For example, here’s how
we could intercept malloc:

The code above keeps a pointer to the first byte of free memory we
have allocated for the heap. On a call to malloc, it retrieves the desired
size, sets EAX (the return value) to this memory address and then
increments the free heap pointer with the desired amount of memory
passed to malloc. This way, the next call to malloc will also receive a fresh
chunk of memory. Then, the handler pops from the stack the return
address of the function and updates EIP accordingly. This assumes the
address we are intercepting is the first instruction of malloc (before it
creates a stack frame and modifies ESP and EBP).

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

Conclusion

In this “Tools and Techniques” paper, we’ve seen how we can leverage
the Unicorn engine to emulate code. This offers an opportunity to create
standalone scripts that will process data based upon code that is not
necessary to fully reverse. Some difficulties remain if the code is too
complex, which can be partially mitigated by hooking library functions
and re-implementing some simplified versions of these. With the
framework described in this document, we were able to emulate and
decrypt data used by a real-life malware and provide a standalone script
to extract/decrypt its configuration without having to reverse the whole
decryption algorithm.

