
Function
Hooking for
Recon and
Exploitation
By: Sam Quinn

2Function Hooking for Recon and Exploitation

Finding vulnerabilities by reverse engineering software is often a difficult undertaking. This is especially true
when attempting to understand data being passed in and out of functions. In these scenarios, dynamic
debugging is often used to track and identify data moving between functions. Another option is the process of
hooking function calls. The term “hooking a function” is the process of changing the default flow of execution,
usually with the intent of either gathering information or changing the result of the hooked function entirely.
This technique analysis will walk through three examples to help explain the process of hooking functions to
retrieve useful information as well as modifying functions to a researcher’s benefit.

Prerequisites:

	� Linux System (a VM will work)

	� Frida tools installed (how to install here)

	� All code can be found here

Example #2:

	� An Android Phone with root access (An

emulator will work too)

Getting Started:

We will focus on a few examples highlighting the
basics of function hooking as well as some real-world
case studies taken from ATR’s previous research. This
walk through is not an in-depth tutorial on how to run
the tools; instead, it details how these tools can be
used to supplement the research process.

To get hands on experience with these tools and
techniques, Examples #1 and #2 are designed to be
followed along with.

Example 1:

In this example we will be working with a small
x86_64 ELF binary compiled for Linux. This program
is a simulated Powerball game where there are 6
random numbers chosen (equivalent to the balls
in Powerball), and the user tries to guess these
numbers. Depending on how many correct numbers
the user chooses, they will receive a cash reward. To
participate in this example, the code can be found
here. This game is just a silly exercise to help teach
the usefulness and power of hooking functions.
With the ridiculous odds of 1 in 292,201,338 to get
the jackpot, hooking functions can increase the

odds of winning if the information of the winning
numbers were disclosed to the user before they enter
their guesses. Since this exercise is about hooking
functions and using tools to instrument this process,
GDB or binary patching will not be covered, but also
could perform similar changes to “win.”

Ultimately this led to our access violation crash. All
this instrumentation and debugging data was done
on the target without ever having to restart the
service. Because of the nature of how this application
was getting started, it did not lend itself well to
being started manually, and since it was running on
an Android, the LD_PRELOAD method of hooking
would have been a major pain. Frida was able to
connect to the running daemon without interrupting
anything and not triggering any watchdogs. With the
instrumentation Frida provided above it was easy to
identify and determine the exploitability of the crash
in question.

Because this is a Linux executable, with dynamic
linking, generic C functions like “rand()” or
“printf()” are linked to the system implementation,
commonly found in libc.so installed in the OS. This
linking helps reduce the size of the executable,
minimizing the redundant code and can work on many
different systems and versions of libc.so. However,
because some of the functions are dynamically linked,
we can tell the OS to use our version of a function
and disregard the true implementation of these
functions. This can be done by simply assigning the
LD_PRELOAD environment variable.

To use LD_PRELOAD one must provide it a path to a
compiled shared object with a function declaration
that matches the desired function to be overwritten.

https://frida.re/docs/installation/
https://github.com/advanced-threat-research/Function_Hooking
https://github.com/advanced-threat-research/Function_Hooking

3Function Hooking for Recon and Exploitation

Figure 1. Shared object code to implement “rand()”

In the powerball.c code, the rand() function is being
used to generate the winning balls. The LD_PRELOAD
variable can be used to overwrite this function to
include a printf call to disclose the winning number
before the user has a chance to guess. The code
shown in Figure 1, creates a rand() function with
the same function signature as the true rand(). This
is necessary as we are not modifying the Powerball
program. The hooking code also includes code that
calls the “true” rand() function, this isn’t necessary
but shows that usefulness of the dlsym() function
for this very task. Lastly, since LD_PRELOAD requires a
shared object file we must use specific compiler flags
to turn this code into a shared object that can be
imported into the Powerball game.

Once the new shared object is compiled and saved
into the LD_PRELOAD variable, when the game
executes it will now run the modified rand() function
which in turn calls the true rand() function, prints
out the number, and then returns the now disclosed
number, as seen in Figure 2.

As seen in Figure 2, the LD_PRELOAD environment
variable is useful and allowed the user to see each
number as it was randomly generated. The downside
of this is that each hooked function call must be
compiled into a “.so” object and have the target
application spawned with the LD_PRELOAD variable
present. Lastly the target application must be
dynamically linked or the LD_PRELOAD variable would
be ignored as no functions are being looked up.

With the basics of how hooking can be completed
manually we can introduce dynamic instrumentation.
For this walk through we will focus on Frida and how
it can overcome the issues presented by manually
hooking function calls. Frida is a very powerful tool
that can be used similar to LD_PRELOAD but can
overcome many of the limitations of the LD_PRELOAD
method. Frida can attach to running programs and
hook functions dynamically as well as functions from
a static binary.

Figure 2. Output from the power game after using LD_PRELOAD with our modified “rand()”

function.

4Function Hooking for Recon and Exploitation

To achieve exactly as we did before with LD_PRELOAD,
the Frida code, written in JavaScript, is much simpler
using Frida’s Interceptor functionality.

The code in Figure 3 tells Frida on exiting the
“rand()” function to print the return value and then
replace the return value with 12. The replacing the
return value is just to show the flexibility Frida has
with its function hooking abilities.

Now, to hook the function using the Frida script from
Figure 3, the application can be started normally. As
seen in Figures 4 and 5, before typing “y” to play, start
Frida and pass the PID of the power executable and
the script to Frida.

It almost seems like magic, how Frida transparently
modifies the process to disclose the original random
numbers and replace all with the value 12. While we
passed in our Frida script, Frida can also act as an
interpreter, which allows commands to be entered
directly into the Frida “shell” to perform all the
dynamic instrumentation needs.

Example 2:

For a more realistic example, we can use Frida to hook
functions within an Android application to disclose
sensitive information. This example also highlights
the cross-compatibility Frida has with the platform-
agnostic functionality of the hooking framework.
When reverse engineering Android applications,
it is often hard to follow code flow or determine
how variables are populated. One example is the
temporary credentials returned by Amazon’s AWS
Cognito services. The Cognito services provide user
access to AWS resources, usually for a limited time.
Sometimes these credentials have more access
than needed for default functionality and can give
a researcher a new attack vector to AWS resources.
Check out our blog here on the iParcelBox, where
we were able to use the AWS Cognito credentials to
access every iParcelBox deployed. While Frida can
orchestrate the unpinning of SSL certs to potentially
show the returned AWS Cognito credentials from a
network capture, it can sometimes be easier to just
use Frida to hook the function, and have it print the
credentials to the console. To follow along in this
example it will be left to the reader to find an Android
application that uses AWS Cognito services; there are
many of them out there, including the iParcelBox app
we investigated. The hooked java classes in Figure 6
will potentially need to be adjusted as well.

The IdToken and AccessToken are both provided
dynamically from the AWS Cognito server and would
require an exhaustive reverse engineering approach
to uncover the correct calls and destination URL
statically.

Figure 3. Frida code to hook, print the value, and replace the return value of “rand()”

Figure 4. Starting the game normally and hooking it with Frida

Figure 5. Hooking the power process with Frida and passing in a Frida script

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/my-adventures-hacking-the-iparcelbox/

5Function Hooking for Recon and Exploitation

Yet, by simply hooking these functions and printing
the return value as shown in Figure 6, we can use
the application to log in to the Android application
normally, and have these credentials nicely printed to
the console as seen in Figure 7.

The possibilities of information that can be gathered
from dynamic hooking provided by Frida is limitless.
A few other interesting applications of using Frida to
hook within Android applications could be to gather
an encryption key when an encryption function is
called or hook a video game function to change
the health impact of an attack. Each of these could
be done without having to modify the Android
applications at all.

Figure 6. Frida code to hook the AWS Cognito Token functions on Android

Figure 7. Trimmed down output from the hooked AWS Cognito token functions

Example 3:

For the last example, Frida will be used to help narrow
down a crash and determine the root cause. This is
another real example from our team’s research into
the Peloton and later assigned CVE-2021-40526. You
can read more about this research here. In short,
there was a read access violation that would occur
only after sending more than one network packet
to the target. The team’s original thought was that

it may have been a use after free vulnerability. Frida
was used to track each malloc() and free() call
to see where the memory address in question was
eventually leading to an access violation. This example
will be extremely hard to follow along with since after
we reported this to Peloton they patched the system
to no longer allow users to get root access to the
device. But this example highlights the power that
Frida has to help narrow down crashes and touches
on some advanced functionality.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/a-new-program-for-your-peloton-whether-you-like-it-or-not/

6Function Hooking for Recon and Exploitation

We used the following Frida code in Figure 8 to keep
track of each malloc and free call as well as the
addresses they are tied to and nicely print the info to
the console.

Hooking the target process in question and sending
our crash case resulted in the following output shown
in Figure 9.

We noticed that the access violation was coming
from what looks like a random address, which would
change every run. The next step was to track the
data structures within the malloced memory. The data
structure of interest was a doubly linked list that kept
track of each socket connection. Each socket was in
a structure as seen in Figure 10.

To view this information systematically in Frida, the
data structure can be accessed with the Frida code
from Figure 11. Because the target application in this
case had symbols, we were able to use the function
names within our Frida code. Once the first item in
the linked list address is returned from the “List_
NetGetFirstNode()” function, we can loop through
the linked list and print the values at each of the
structs members to disclose useful information.

The “List_NetGetFirstNode()” function was
called each time a write to the linked list would
occur and seemed to be a suitable candidate for
instrumentation. The results can be viewed in Figure
12.

Figure 8. Frida code to track each “malloc()” and “free()” call to determine if the crash was

a use after free vulnerability

Figure 9. Frida output showing each malloced address and each address being freed

Figure 10. The data structure for each network connection

Figure 11. Frida code to print off each connection data structure from the linked list

Figure 12. Frida output showing the useful info from the connection data structure

Copyright © 2022 Musarubra US LLC

APRIL 2022

This shows that there are two active connections
and that they are pointing to each other. With this
information, the crash condition was again sent to
the target, and it was clear that at a certain point the
“socketfd” seems to get a weird value much greater
than what is considered normal for a file descriptor as
seen in Figure 13.

After sending a few more packets to the target, the
entire structure (including the previous and next
pointers) seems to get messed up:

Ultimately this led to our access violation crash. All
this instrumentation and debugging data was done
on the target without ever having to restart the
service. Because of the nature of how this application
was getting started, it did not lend itself well to
being started manually, and since it was running on
an Android, the LD_PRELOAD method of hooking
would have been a major pain. Frida was able to
connect to the running daemon without interrupting
anything and not triggering any watchdogs. With the
instrumentation Frida provided above it was easy to
identify and determine the exploitability of the crash
in question.

Figure 13. Frida output showing where the data structure is getting corrupted

Figure 14. Frida output showing a very corrupted data structure

Concluding thoughts:

Hooking functions to bypass, modify, or simply gather information is a great tool that every security researcher
should have in their arsenal. While there are many other useful reasons to hook functions and many other tools
to do so, we hope that this can give some inspiration on what the technique of hooking can do for you in the
future.

To continue learning more about Frida checkout these resources.

Frida-boot

Frida Quick Start Guide

Getting Started with Frida : Hooking a Function and Replacing its Arguments

https://youtu.be/CLpW1tZCblo
https://frida.re/docs/quickstart/
https://blog.fadyothman.com/getting-started-with-frida-hooking-main-and-playing-with-its-arguments/

