
Modifying
Third-Party
Android Apps
for Fun and
Profit
By: Mark Bereza

WHITE PAPER

2Modifying Third-Party Android Apps for Fun and Profit

Table of Contents

	 03	 Rationale

	 04	 Installing ADB on Dev Machine

	 04	 Enabling Developer Options + Debugging on an

Android Phone	

	 05	 Downloading the APK to be Modified

	 05	 Unpacking the APK

	 05	 Dalvik, smali, and Other Made-Up Words	

	 06	 Making Changes to the Code

	 09	 Repacking the APK	

	 09	 Signing the APK	

	 09	 Installing the APK via ADB

WHITE PAPER

3Modifying Third-Party Android Apps for Fun and Profit

Rationale

Anyone who’s taken at least one computer science course knows that all roads lead to Stack Overflow. In our
collective defense, it’s the natural conclusion of many good habits we try to instill in fledgling programmers: be
smart but lazy, don’t reinvent the wheel, and embrace modularity. Those of us who progress beyond introductory
CS courses quickly learn that while you’re unlikely to find exactly what you need ready to be copied from some
pure soul with 50,000 Reputation, often you can find something close enough – quickly transforming a “draw
the rest of the ■■■■ing owl” problem into a much simpler “fine-tuning” problem.

Hackers, who often have fundamentally different goals than software engineers (kicking over sand castles vs.
building them), can still benefit greatly from embracing this strategy when it comes to exploitation and post-
exploitation.

Similarly, in the context of Android exploitation, it can often be much easier to inject code into an app that is
already designed to authenticate with and expose the functionality of a cloud-based service than it would be
to write it all from scratch just to deliver a payload.

‘Easier’, however, is a relative term – app developers have this nasty habit of shipping APKs instead of their
source code on Google Play, and binary patching an APK isn’t exactly a walk in the park, either. You can throw
a Java decompiler at it, of which there are many, but the code it spits out won’t compile for any app more
complex than a single class. What’s a hacker to do?

The answer is you’re gonna have to get your hands dirty and modify the APK at the bytecode level, allowing you
to surgically add (or subtract) functionality without the need to recompile the app. The remainder of this guide
will walk you through this process step by step, using my recent research on the temi Personal Robot as a case
study. Before we get to the recipe, however, it’s important to first collect all the necessary ingredients:

	� ADB will be used to move files to/from the attacker’s Android device.

	� Apktool (>= 2.4.1) will be used to unpack/repack the APK. NOTE: It is important that the Apktool used is at
least version 2.4.1. Older versions have a bug that causes it to not copy the META-INF/services directory,
resulting in unstable APKs.

	� JADX will be used to decompile the app’s bytecode.

	� keytool and jarsigner will be used to re-sign the altered app, and are included with the Java Development
Kit, or JDK.

After all, what is ROP if not the pinnacle of using someone else’s
code for your own needs?

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/call-an-exorcist-my-robots-possessed/
https://developer.android.com/studio/command-line/adb
https://ibotpeaches.github.io/Apktool/
https://github.com/skylot/jadx
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://java.com/en/download/help/develop.html
https://java.com/en/download/help/develop.html
https://ctf101.org/binary-exploitation/return-oriented-programming/

WHITE PAPER

4Modifying Third-Party Android Apps for Fun and Profit

Installing ADB on Dev Machine

This process requires the use of the Android Debug
Bridge, or ADB. This can be obtained several ways:

1.	 Install Android Studio. Although Android Studio
does not include ADB by default, you can use it
to download the Android SDK, which does include
ADB. This might be the best option since you can
use Android Studio to debug your altered app.

	– From the Welcome screen, click “Configure” in
the bottom right (next to the cog) and select
“SDK Manager” from the drop-down list.

	– From there, click the “SDK Tools” tab and make
sure that “Android SDK Platform-Tools” is
checked.

	– Finally, hit “Apply” then “OK”.

	– ADB can now be found in <HOME_
DIRECTORY>/Android/Sdk/platform-
tools/adb . For Windows machines, this
will usually be C:\Users\<USER_NAME>\
AppData\Local\Android\Sdk\
platform-tools\adb .

2.	 Download the standalone Android platform-tools
for Windows, Mac, or Linux. This will allow you to
use ADB without installing the full Android Studio.
Once extracted, ADB can be launched directly
from the platform-tools directory (no need to
install) via cmd/PowerShell/terminal.

3.	 If you’re using Debian-based Linux (like Ubuntu),
you can install ADB via apt:

sudo apt-get install adb

Enabling Developer Options +
Debugging on an Android Phone

To use ADB with an Android phone, you will also need
to enable debugging through Android’s developer
options, which are hidden by default. On the Android
phone you plan to do testing on:

1.	 Open the Settings app, scroll to the bottom, and
select “About phone”.

2.	 Scroll to the bottom and tap “Build number” 7
times.

3.	 Return to the previous screen and this time tap
“System.”

Figure 1

Figure 2

Figure 3

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio#downloads
https://dl.google.com/android/repository/platform-tools-latest-windows.zip
https://dl.google.com/android/repository/platform-tools-latest-darwin.zip
https://dl.google.com/android/repository/platform-tools-latest-linux.zip

WHITE PAPER

5Modifying Third-Party Android Apps for Fun and Profit

4.	 Tap “Developer options” near the bottom.

5.	 Under the Debugging heading, make sure “USB
debugging” is toggled on.

Further details can be found here.

Downloading the APK to be Modified

Once you’ve decided which app will serve as your
guinea pig, the next step is to extract its APK file and
save it to whatever machine you’ll be using to modify
it, which I’ll be referring to as the ‘dev machine’
from here on. There are many ways to do this, but
perhaps the easiest is using an online database like
APKCombo. Alternatively, if you already have the
target app installed on your Android device, the APK
Extractor app can be used to obtain an APK file from
an installed app, which you can then move onto your
dev machine:

1.	 Connect the phone to your dev machine via USB
cable.

2.	 On your machine, run:

adb pull /sdcard/ExtractedApks/<NAME_
OF_APK> <DESTINATION>

In my case, I extracted temi_com.robotemi.apk ,
the Android app used to control the temi robot.

Unpacking the APK

Next, we will need to unpack the APK in order to
access the bytecode and various resource files
(like AndroidManifest.xml). This can be done
using Apktool – installation instructions for various
platforms can be found here. Once again, make sure
you are using version 2.4.1 or above.

Once Apktool is installed, you can use it to unpack the
APK by running:

apktool d <APK_FILE>

This will create a directory bearing the same name
as the APK file (sans the extension) and containing all
the unpacked code and resources. The manifest file
can be found in the root of this directory, the various
resource files can be found under res/ , and the
code itself (in smali format) can be found in smali/ .
Some larger apps contain multiple classes.
dex files, in which case the smali code will be split
between smali/ , smali_classes2/ , smali_
classes3/ , etc.

Dalvik, smali, and Other Made-Up
Words

Now would probably be a good time to explain what
exactly smali is, how it relates to Dalvik, and why you
should care.

Dalvik was the name of the virtual machine used by
Android to run its apps, which meant that building an
APK involved converting Java (or Kotlin) source code
into Dalvik bytecode. Since Android 5.0, Dalvik has
been replaced by Android Runtime, or ART, but the
bytecode format has remained, stored as .dex files
within a packed APK (short for Dalvik EXecutable).

Figure 4

Figure 5

https://developer.android.com/studio/debug/dev-options.html
https://apkcombo.com/
https://play.google.com/store/apps/details?id=com.ext.ui&hl=en_US
https://play.google.com/store/apps/details?id=com.ext.ui&hl=en_US
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/install/
https://github.com/JesusFreke/smali

WHITE PAPER

6Modifying Third-Party Android Apps for Fun and Profit

smali, on the other hand, is an assembler for these
.dex files that maps the bytecode into a format that
is “human readable” (a hideous overstatement), the
same way an x86 binary can be disassembled into x86
assembly. In our case, Apktool has graciously done
the difficult task of converting the APK’s various
.dex files into smali, with each Java class getting
its own .smali file. Since Apktool is also capable of
turning smali code back into the .dex format, we can
hypothetically modify the code within these files and
reconstruct the APK without needing to recompile
the app.

Making Changes to the Code

smali, being an assembler, is difficult to read. This
isn’t helped by its obtuse syntax or the general
lack of documentation for it. Here are some decent
resources to help get you started:

URL Description

https://source.android.com/devices/tech/
Dalvik/dex-format

Wiki page for the Dalvik .dex format.

http://pallergabor.uw.hu/androidblog/Dal-
vik_opcodes.html

List of every Dalvik instruction with corresponding descriptions.

https://github.com/JesusFreke/smali/wiki/
Registers

Description of how registers/method parameters work in smali.

https://github.com/JesusFreke/smali/wiki/
TypesMethodsAndFields

Description of the various types supported by smali and how methods/fields are specified.

http://androidcracking.blogspot.com/search/
label/smali

Blog on Android hacking with various posts addressing smali coding concepts.

https://themasterofmagik.wordpress.
com/2014/03/27/basic-smali/

A very thoroughly commented example smali program, taken from the previous blog.

https://bitbucket.org/JesusFreke/smali/
downloads/smalidea-0.05.zip

smali plugin for Android Studio. Install via Configure → Plugins → Cog Icon → Install Plugin From Disk...

By this, I mean that it’s better to do your reversing
on decompiled Java code and only look at the smali
code once you know exactly what change you want
to make and what class to make it in. There’s lots of
Java decompilers that work on Android code; having
tried most of them, I would say JADX is probably the
best:

	� It’s written in Java so it’ll run on any platform

	� It features an intuitive GUI

	� It can open .apk files directly

	– Will convert .dex to .jar and merge multiple .dex
files automatically

	� It handles modern Java features like nested
classes and lambda expressions better than most
other decompilers

	� For any class being viewed, you can click on the
“smali” tab to see the smali code

	� Can display line numbers synchronized with the
corresponding “.line” directives in the bytecode

	� Right click on any method, member, or class to see
its usage or declaration

	� The newest version also includes a built-in
debugging tool that works over ADB

The best approach to making
meaningful changes to a
complex app is to read Java,
write smali.

https://source.android.com/devices/tech/Dalvik/dex-format
https://source.android.com/devices/tech/Dalvik/dex-format
http://pallergabor.uw.hu/androidblog/Dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/Dalvik_opcodes.html
https://github.com/JesusFreke/smali/wiki/Registers
https://github.com/JesusFreke/smali/wiki/Registers
https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
http://androidcracking.blogspot.com/search/label/smali
http://androidcracking.blogspot.com/search/label/smali
https://themasterofmagik.wordpress.com/2014/03/27/basic-smali/
https://themasterofmagik.wordpress.com/2014/03/27/basic-smali/
https://bitbucket.org/JesusFreke/smali/downloads/smalidea-0.05.zip
https://bitbucket.org/JesusFreke/smali/downloads/smalidea-0.05.zip
https://github.com/skylot/jadx

WHITE PAPER

7Modifying Third-Party Android Apps for Fun and Profit

Figure 8

A close runner-up is Bytecode Viewer. Like JADX,
it is also written in Java, features a GUI, and can
open .apk files directly. Additionally, it allows you to
select which decompiler to use (and features all the
prominent ones) and even lets you see the same class
decompiled using up to three different decompilers
side by side. Unlike JADX, however, it doesn’t display
smali code and lacks the “see usage/declaration”
feature, both of which I found extremely useful when
reversing the temi app.

Before you go digging through
thousands of Java classes, it’s
important to narrow your scope by
deciding ahead of time what it is
you’re trying to accomplish – start small. In the
case of the temi app, my first goal was to modify
the app so that it could be used to intercept video
calls intended for another user. While reversing, I
had learned that the temi used a publish/subscribe
protocol called MQTT to send various messages
between the robot, the phone app, and temi’s cloud-
based servers. In MQTT, users can publish messages
to topics, causing all users subscribed to that topic to
receive the message. In the case of temi, each user
(phone app or robot) has their own personal call invite
topic, and callers can publish a call invite message to
this topic in order to initiate a call. Thus, I was hoping
to find the code responsible for subscribing a user to
their own call invite topic and modify it to subscribe
to another user’s instead.

Once you have an idea of what functionality
you wish to modify, start your Java spelunking
by performing a search for a string you know
is related to this functionality. For example, if
you’re being told that you need to sign in to
Facebook before you can use the app and you
want to bypass that check, you can start by
doing a string search for the error message in
the directory spit out by Apktool. For the temi
app, I knew that the invite topic followed the
format “client/X/invite”, where X is the user’s
unique ID:

The third result led me to MqttManagerImpl.
buildInviteTopic() , the method responsible for
building the invite topic string:

From there, I used JADX’s “see usage/
declaration” feature to enumerate the
locations where this method gets invoked.

Among these was MqttManagerImpl.
lambda$initMqttClient$13() , which defines
an anonymous MqttCallbackExtended class
that, among other things, subscribes a user to their
own call invite topic. It accomplishes this by making
a call to MqttManagerImpl.subscribe() ,
which takes two arguments: the topic string and a
number indicating the quality of service (QoS) level, as
shown on line 498 in Figure 8. In this case, I was only
interested in the first argument, which is obtained by
calling buildInviteTopic() .

Jackpot. All I needed to do was replace the call to
buildInviteTopic() in the smali code with a
hardcoded string containing the victim’s user ID.

Figure 6

Figure 7

https://github.com/konloch/bytecode-viewer/releases
https://mqtt.org/

WHITE PAPER

8Modifying Third-Party Android Apps for Fun and Profit

Once you’ve read enough Java and arrive at your
own “Jackpot” moment, it’s time to switch to the
“write smali” step to make the actual modification.
In my case, I opened MqttManagerImpl.smali
in VSCode and searched for this anonymous class.
Unfortunately, Dalvik bytecode doesn’t natively
support anonymous classes, so conventional smali
classes are defined for them with mangled names.
The one containing the code I was looking for was
named MqttManagerImpl$7.smali , the relevant
part of which is shown in Figure 9. Be on the lookout
for mangled names containing dollar signs like this if
your app also makes liberal use of anonymous classes,
nested classes, or lambda expressions.

The call to subscribe() I was trying to modify
can be seen on line 10 in Figure 9. It’s called using
Dalvik’s invoke-virtual instruction, which is

used to invoke any method that is not private, static,
final, or a constructor. Unfortunately, the call to
buildInviteTopic() I was trying to replace is
nowhere to be found. Having read some of smali’s
sparse documentation, I recalled that the parameters
passed to the method are loaded in order from the
list of virtual registers between curly braces, which in
the case of the subscribe() call above was {p2,
v1, v0} . The reason three virtual registers are used
despite the method only taking two arguments is that
the first register in the list always contains the implicit

this reference. This meant that whatever’s in v1 just
before subscribe() is called should contain the return
value of buildInviteTopic() . Since line 8 is using
move-result-object into v1 right after a call to
MqttManagerImpl.access$400() on line 6, it’s
safe to assume the return value of access$400() is
what’s being passed as the first parameter.

As we can see in Figure 10, access$400() is simply
a wrapper for buildInviteTopic() .

This is a quirk with inline/nested classes in Dalvik:
calling the “outer” class’s methods from the “inner”
class requires the construction of an intermediary

access method since the child class is treated as
an entirely separate class under the hood and their
hierarchical scope relationship is not preserved –
another obstacle to look out for in your reversing
endeavors.

Armed with this knowledge, I replaced lines 6-8 in
Figure 8 with the line in figure 10.

const-string , as the name would suggest, is the
instruction used to store a static string value in a
virtual register; in this case, v1.

When you are content with your “patch”, save your
modifications to the smali file(s) and move on to the
next step.

Figure 9

Figure 10

Figure 11

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

WHITE PAPER

9Modifying Third-Party Android Apps for Fun and Profit

Repacking the APK

Once you’ve made your desired changes to the app
code, you will need to repack the APK using Apktool:

apktool b <UNPACKED_APK_DIRECTORY>

Here, <UNPACKED_APK_DIRECTORY> refers to the
directory produced when you first unpacked the APK.
The changes you made to the smali code should have
been done in this directory.

By default, Apktool will place the repacked APK file in
<UNPACKED_APK_DIRECTORY>/dist/ . You can
also manually specify the output path:

apktool b <UNPACKED_APK_DIRECTORY> -o
<OUTPUT_PATH>

Signing the APK

Before you can install your modified APK on your
phone, you must first sign it, since Android typically
does not allow unsigned apps to be installed, even via
ADB. In order to sign your altered app, you must first
generate a key. This can be done using keytool:

keytool -alias am -genkey -v -keystore
my-release-key.keystore -keyalg RSA \

-keysize 2048 -validity 10000

You will be prompted for a keystore password. Since
you are likely not planning on having a wide release
of your hacked app, it doesn’t matter what you pick
as long as it’s at least 6 characters long and you
can remember it. You will also be prompted to enter
further information like name, location, etc. It doesn’t
really matter how you answer these – you can leave
them all blank if you wish.

This will create a new key with the alias “am”, RSA
as its algorithm, 2048 as its size (required for RSA),
a validity duration of 10,000 days, and store it in the
keystore file “my-release-key.keystore” in
the current directory. The specifics of how the app
is signed aren’t particularly important – just that you
sign it.

Once you have your key, you can use it to sign your
app using jarsigner:

jarsigner -verbose -sigalg SHA1withRSA
-digestalg SHA1 -keystore \

my-release-key.keystore <LOCATION_OF_
REPACKED_APK> am

“am” at the end of the command refers to the alias
you gave your key in the previous command. If you
used a different alias, change this string accordingly.
Additionally, make sure to provide the -keystore flag
with the exact location of the keystore file generated
in the previous command. The way the command is
written here assumes its being run from the same
directory as the previous command. <LOCATION_
OF_REPACKED_APK> , as you may have guessed,
refers to the output of your prior apktool b command.

Once all the files are successfully signed, you should
see output similar to the following:

>>> Signer

 X.509, CN=Mark Bereza, OU=Unknown,
O=Unknown, L=Unknown, ST=Unknown,
C=us

 [trusted certificate]

jar signed.

Warning:

The signer’s certificate is self-
signed.

The warning about the certificate being self-signed is
to be expected.

Installing the APK via ADB

Now that your app is repacked and signed, it’s finally
ready to be installed:

1.	 Connect the phone to your dev machine via USB
cable.

2.	 In a terminal, run:

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

adb install -d -r <LOCATION_OF_
REPACKED_APK>

The -d flag allows for the downgrading of apps and -r
allows the app to be installed even if an app with the
same name is already present on the device, which is
then overwritten.

3.	 If successful, you should see output similar to the
following:

Performing Push Install

temi_com.robotemi.apk: 1 file pushed.
4.2 MB/s (41591446 bytes in 9.458s)

 pkg: /data/local/tmp/temi_com.
robotemi.apk

Success

You should now be able to run your modified app and
hack the planet. :)

