
WHITE PAPER

Distributed
Security:
Shamir’s Secret
Sharing Key
Shares
By: Charles McFarland

2Distributed Security: Shamir’s Secret Sharing Key Shares

WHITE PAPER

Introduction

Privacy is both important and difficult to achieve in this day and age. To
complicate matters, some data needs to be recoverable in a secure way.
You may find yourself trying to solve this problem alone but fortunately
others have come before you. You can use what they have discovered
to build a base for your current needs. Typical requirements are that the
data must be secure, recoverable in the event the owner is unavailable,
and that any secret sharing should be minimized. Obviously, it would be
unwise to leave the data unencrypted. While it may be recoverable, it is
not secure. There is an option to encrypt the data and share a private
key (PK) to whomever has need of it. Again, recoverable, but sharing
the PK tends to be a bad idea. With multiple holders of the private key,
you have increased the chances of the key being leaked and the data
compromised. Fortunately, there is another option that can meet all three
of these requirements. Shamir’s Secret Sharing Scheme.

What is Shamir’s Secret Sharing Scheme?

Try saying this four times fast: Shamir’s Secret Sharing Scheme (SSSS).
If you can get past the mouthful, Shamir’s algorithm simply enables the
recovery of a secret based on N of M shares. Shares are similar to private
keys or passwords. However, they are mathematically generated from a
secret and split into more than one part. A single password can be split
into many shares and by combining some portion of those shares you can
recover the password. Shamir’s Secret Sharing Scheme takes care of the
splitting of some secret into shares as well as the recombining of those
shares for recovery. Here is an example of using SSSS to split the string
“Hello!” into 4 shares while requiring 3 shares to recover the string.

example-1-c90088993281dd585978cf76b069502b9588dbe1b784e1391d7331125c7d4fe1b0957ebd6e9a3968a0ccf5d2b7b4f55f-
73c7acee8ace99d566d358607430592a015c1254dba62d664e4edcb848b5761745d4ab96ac642e5b75cf5196a1dabbd-
4c68269e3054032e7e4e3b83ae074eae0a00d2e886dae00c377db88249e0f8537

example-2-28bca8ccaf1d58fc88d8ad227f20f89f8f73a5ecd1a8765903674c8f111557ad4262ae8faa4a60e58e6a8cfb457b-
fe9e8fe3701340e0b9e3c247bfff9319b951991ef219cc93966f725014d44ba42107f4ec3904db2dcfe3d4905d960cc42b-
71c9529f85936df7fce1b3a5595adf5f3ba406fb6390a85fd9f66b987fec049706

example-3-771a4f5afa7f5526a016119dd3000bee28b737e1620dc2c471d5fbd0611a737c918b5a1df428f740f20106b0c2bd2e52e-
a877b7631b5608b53f57a88e119c7092aaf5749af55beeeebae017ce8295a36b1117e6d2933073fe9b9e5f6c016587548461609e-
d9554a01cb08ed6737636cacdae3b060bd8b4f953dfc151ed4875a3

example-4-efcfc3357ef48f5520a5504f3639e04a82e8b183643a39409182823a2359c6f03a77f57e9c42b717d1570688307079dd
6a010df3ea2d9c3dc42378dfe8c6917dd74b03c89c7828d8c402a8ce341b3c68155f2ba9d17e573de89c93b14f31193169abac72fe-
82decce01379a7ee980467e92990e4786e0a7a27d4af45bebc51db

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

3Distributed Security: Shamir’s Secret Sharing Key Shares

WHITE PAPER

Shares are designed to be passed to multiple people to collaborate
when recovery is necessary. Collaboration simply means to join their
shares together using the combine algorithm to recover the secret.
In the “Hello!” example, 3 are required for recovery. This number could
have been set to 2 as well. You get to choose. By turning “Hello!” into
shares, you can pass four “shares” around, so that as long as three of
them remain, the string can be recovered. The contributors will need
to collaborate so even if one or two of them leaks their shares or are
compromised, the secrets remain safe.

Shamir’s Secret Sharing Scheme also happens to have widely distributed
implementations across multiple operating systems. By using these
implementations, you can avoid ‘rolling your own’ and simply build
a wrapper around something that has survived years of scrutiny.
Implementing your own creates risks of including vulnerabilities, both
known and unknown. Cryptography is hard and this lesson continues
to be relearned as detailed in this report. In it, the authors list improper
implementations of Feldman’s Scheme, which is in part based off
Shamir’s Secret Sharing Scheme. Here is the list they have discovered.

	� Binance’s tss-lib

	� Clover Network’s threshold-crypto

	� Keep Network’s keep-ecdsa

	� Swingby’s tss-lib

	� ZenGo X’s curv

To avoid this pitfall, I’ll be referencing the B. Poettering implementation
which is not susceptible to these vulnerabilities. This implementation can
be found in many popular package managers. Installation is fairly easy. For
Debian-based Linux distributions you can use apt-get or the Homebrew
package manager to install it on a Mac.

Installation

Debian based installation:

$sudo apt-get update

$sudo apt-get install ssss

Mac OS installation:

$brew install ssss

The above commands give you access to two tools: ssss-split and ssss-
combine. These implement the split and combine algorithms. More
information about their usage can be found in the Man page.

https://blog.trailofbits.com/2021/12/21/disclosing-shamirs-secret-sharing-vulnerabilities-and-announcing-zkdocs/
http://point-at-infinity.org/ssss/
https://brew.sh/
https://www.unix.com/man-page/debian/1/ssss/

4Distributed Security: Shamir’s Secret Sharing Key Shares

WHITE PAPER

The Wrapper
Since this implementation only encrypts up to a 1024 bit secret, you
can use a combination of AES 256 CBC with PBKDF2 (Password based
key derivation function 2) to secure larger secrets. SSSS can split the
password into shares so you can keep the password private. All you need
to do is generate a 1024 based secret to use as a password for your
AES encrypted files. In order to streamline the process and use better
cryptographic random number generators you can wrap everything up
in Python 3. By using STDIN and STDOUT you’ll be able to use these as a
base for any further work you wish to do and perform actions without
the password ever being visible to the user.

The parameter projectname is simply a prefix token in text that will be
added for each share. It is not necessary, but useful to remind someone
what the share is for. The 3 is the threshold of shares necessary to
recover the password. The 4 is the total number of shares being
distributed. Normally after execution, this command will ask the user for
the password as input. The line share.communicate(input=key)[0] avoids
user input by passing our generated key in automatically. This enables us
to hide the generated password from the user.

Start with encrypting the secret and splitting the password into shares.

1.	 Generate a random password

2.	 Encrypt a file with AES 256 using the generated password

3.	 Split the generated password into shares using Shamir’s scheme.

4.	 Output the shares to STDOUT and distribute.

Here is the code for the split wrapper which completes these tasks.

split.py

The subprocess package is used to call the install ssss implementation. This is equivalent to:

$ssss-split -w projectname -t 3 -n 4 -s 1024 -q

5Distributed Security: Shamir’s Secret Sharing Key Shares

WHITE PAPER

The generated password uses the strings and secrets package
to generate a random ASCII 1024-bit password. Secrets is a more
appropriate method for generating random numbers than the random
package, since we want our generation to be cryptographically strong.
More information on the secrets package can be found here.

The combine.py wrapper needs to be able to interact with ssss-combine
to input each share when requested. Use the package pexpect with the
method sendline to do this. Again, you supply the threshold (3), the total
number of shares (4) and the bitsize (1024). Also add the –Q flag to put
the tool in quiet mode. This makes it much easier for scripting as you’ll
know exactly where the secret is printed.

 This is equivalent to executing the following:

$ssss-combine –t 3 –n 4 –s 1024 -Q

It then takes the required threshold of shares as user input and outputs
the password to STDOUT. You can pipe this to your decryption tool for
further scripting while avoiding printing the password.

Next, the shares must be combined to recover the secret:

1.	 Take shares as input.

2.	 Output to STDOUT for use with further scripting

combine.py

https://docs.python.org/3/library/secrets.html

6Distributed Security: Shamir’s Secret Sharing Key Shares

WHITE PAPER

Bringing It All Together

For encryption and decryption, you can use openssl. The following two
commands will allow you to pipe in output from your tool into openssl as
part of a scripting process.

Encrypt:

$openssl enc –aes-256-cbc –md sha512 –pbkdf2 –iter 100000 –salt –in secrets.
txt -out secrets.enc -pass stdin

Decrypt:

$openssl enc –d –aes-256-cbc –md sha512 –pbkdf2 –iter 100000 –salt –in
secrets.enc -out secrets.txt -pass stdin

Here is what the entire process looks like.

1.	 Create a recoverable password with split.py

$python3 ./split.py

2.	 Supply combine.py with the shares, then pipe the output to the encryption process
(openssl)

$python3 ./combine.py | openssl enc –aes-256-cbc –md sha512 –pbkdf2 –iter
100000 –salt –in secrets.txwt -out secrets.enc -pass stdin

3.	 Decrypt the secret using combine.py and pipe the output to the decryption process.

$python3 ./combine.py | openssl enc –d –aes-256-cbc –md sha512 –pbkdf2 –iter
100000 –salt –in secrets.enc -out secrets.txt -pass stdin

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

By using a wrapper and Shamir’s Secret Sharing Scheme you now have a
base for scripting and can successfully hide the password from the user.
If you distribute the 4 keys to other users and the encrypted container,
then if any of them need the secrets they can simply combine their
share with two others and run the scripts above. The files remain secure
encrypted in AES 256, three of your users can collaborate and recover
the password when necessary, and the PK is never distributed. This
matches the original requirements you’ve set out for.

