TrelliX

Distributed
Security:
Shamir's Secret
Sharing Key
Shares

WHITE PAPER

————— 7/ VANNANANSNSN~—~————/ /T VNN ~——
~————c— s /) VANNNNSNSN~———— /77] VNN NN~
~~————ou—rs /)] LV AVNNNSNS~—~————//77 17T 1 VNN NN~
NS~~—————~////]] | \\NNNNSN~—————~///71711\V\V\\\
NN~~—————// /[| L \ANNNNSN~—~———+—-///7111\V\\\
\\\N\~~————-///]| V" \\\\\~N~—~—n——o-//7/77111\\
VANNSNS~~————— /)] |V ANNNNSNSN~—~———— /771 11\

WHITE PAPER

Introduction

Privacy is both important and difficult to achieve in this day and age. To
complicate matters, some data needs to be recoverable in a secure way.
You may find yourself trying to solve this problem alone but fortunately
others have come before you. You can use what they have discovered
to build a base for your current needs. Typical requirements are that the
data must be secure, recoverable in the event the owner is unavailable,
and that any secret sharing should be minimized. Obviously, it would be
unwise to leave the data unencrypted. While it may be recoverable, it is
not secure. There is an option to encrypt the data and share a private
key (PK) to whomever has need of it. Again, recoverable, but sharing

the PK tends to be a bad idea. With multiple holders of the private key,
you have increased the chances of the key being leaked and the data
compromised. Fortunately, there is another option that can meet all three
of these requirements. Shamir’s Secret Sharing Scheme.

What is Shamir’'s Secret Sharing Scheme?

Try saying this four times fast: Shamir’'s Secret Sharing Scheme (SSSS).

If you can get past the mouthful, Shamir's algorithm simply enables the
recovery of a secret based on N of M shares. Shares are similar to private
keys or passwords. However, they are mathematically generated from a
secret and split into more than one part. A single password can be split
into many shares and by combining some portion of those shares you can
recover the password. Shamir's Secret Sharing Scheme takes care of the
splitting of some secret into shares as well as the recombining of those
shares for recovery. Here is an example of using SSSS to split the string
"Hello!” into 4 shares while requiring 3 shares to recover the string.

example-1-c90088993281dd585978cf76b0695020b9588dbeb784e1391d7331125¢c7d4felb0957ebd6e9a3968a0cctbd2b7b4f55f-
73c7acee8ace99d566d358607430592a015¢1254dbab2d664e4edcb8480b5761745d4alb96ac642e5075¢ct5196aldabbd-
4c68269e3054032e7e4e3b83ae074eac0a00d2e886dac00c377db88249e0f8537

example-2-28bca8ccaf1db8fc88d8ad227f20f89f8f73a5ecd1a8765903674c8f111557ad4262ae8faa4ab60e58e6a8c b4 57b-
feQe8fe3701340e0b9e3c247bfff93190951991ef219cc93966725014d4 4ba42107f4ec3904db2dcfe3d4905d960cc4 2b-
71c9529f85936df7fcelb3a5595adf5f3bad06fb6390a85fdof660987fec049706

example-3-771a4f5afa7f5526a016119dd3000bee28b737€1620dc2¢c471d5flod0611a737¢c918b5aldf428f7401f20106b0c2bd2e52¢e-
a877b763105608b53f57a88e119c7092aaf5749af55beeecbaec017ce8295a3601117e6d2933073fe9b9e5f6c016587548461609e-
d9554a01cb08edb737636cacdac3db060bd8b4f953dfc15led4875a3

example-4-efcfc3357ef48f5520a550413639e04a82e80183643a39409182823a2359c6f03a77f57€9c42b717d1570688307079dd
6a010df3ea2d9c3dc42378dfe8c6917dd74b03c89¢c7828d8c402a8ce34103c68155f20ba9d17e573de89c93b14131193169abac72fe-
82decce01379a7ee980467€92990e4786e0a7a27d4af45bebch1db

Distributed Security: Shamir's Secret Sharing Key Shares

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

WHITE PAPER

Shares are designed to be passed to multiple people to collaborate
when recovery is necessary. Collaboration simply means to join their
shares together using the combine algorithm to recover the secret.
In the “Hello!" example, 3 are required for recovery. This number could
have been set to 2 as well. You get to choose. By turning "Hello!" into
shares, you can pass four "shares” around, so that as long as three of
them remain, the string can be recovered. The contributors will need
to collaborate so even if one or two of them leaks their shares or are
compromised, the secrets remain safe.

Shamir's Secret Sharing Scheme also happens to have widely distributed
implementations across multiple operating systems. By using these
implementations, you can avoid ‘rolling your own’ and simply build

a wrapper around something that has survived years of scrutiny.
Implementing your own creates risks of including vulnerabilities, both
known and unknown. Cryptography is hard and this lesson continues

to be relearned as detailed in this report. In it, the authors list improper
implementations of Feldman’'s Scheme, which is in part based off
Shamir's Secret Sharing Scheme. Here is the list they have discovered.

= Binance's tss-lib

Clover Network's threshold-crypto

Keep Network's keep-ecdsa

Swingby's tss-lib

= ZenGo X's curv

To avoid this pitfall, I'll be referencing the B. Poettering implementation
which is not susceptible to these vulnerabilities. This implementation can
be found in many popular package managers. Installation is fairly easy. For
Debian-based Linux distributions you can use apt-get or the Homebrew
package manager to install it on a Mac.

Installation

Debian based installation:

$sudo apt-get update
$sudo apt-get install ssss

Mac OS installation:

$brew install ssss

The above commands give you access to two tools: ssss-split and ssss-
combine. These implement the split and combine algorithms. More
information about their usage can be found in the Man page.

Distributed Security: Shamir's Secret Sharing Key Shares 3

https://blog.trailofbits.com/2021/12/21/disclosing-shamirs-secret-sharing-vulnerabilities-and-announcing-zkdocs/
http://point-at-infinity.org/ssss/
https://brew.sh/
https://www.unix.com/man-page/debian/1/ssss/

WHITE PAPER

The Wrapper

Since this implementation only encrypts up to a 1024 bit secret, you

can use a combination of AES 256 CBC with PBKDF2 (Password based
key derivation function 2) to secure larger secrets. SSSS can split the
password into shares so you can keep the password private. All you need
to do is generate a 1024 based secret to use as a password for your

AES encrypted files. In order to streamline the process and use better
cryptographic random number generators you can wrap everything up
in Python 3. By using STDIN and STDOUT you'll be able to use these as a
base for any further work you wish to do and perform actions without
the password ever being visible to the user.

Start with encrypting the secret and splitting the password into shares.

1. Generate a random password

2. Encrypt a file with AES 256 using the generated password

3. Split the generated password into shares using Shamir's scheme.
4. Output the shares to STDOUT and distribute.

Here is the code for the split wrapper which completes these tasks.

split.py

subprocess
string
secrets

rerate_key(bits):
characters = string.ascii_letters + string.digits + string.punctuation
hex_string = ''. ([secrets. (characters) for _ in (int(bits/8))1)
return hex_string

ef main(threshold, shares, b
Kkey = (bitsiz
shares = subprocess. lit',
output = shares. (input=key) [0]
(output)

'-w' 'projectname', '-t', (threshold), '-n', (shares), '-s', (bitsize), '-q'l, text= , stdin=subprocess.PIPE, stdout=subprocess.PIPE)

if __name_ == "_main_":
(3, 4, 1024)

The subprocess package is used to call the install ssss implementation. This is equivalent to:

$ssss-split -w projectname -t 3 -n 4 -s 1024 -q

The parameter projectname is simply a prefix token in text that will be
added for each share. It is hot necessary, but useful to remind someone
what the share is for. The 3 is the threshold of shares necessary to
recover the password. The 4 is the total number of shares being
distributed. Normally after execution, this command will ask the user for
the password as input. The line share.communicate(input=key)[0] avoids
user input by passing our generated key in automatically. This enables us
to hide the generated password from the user.

Distributed Security: Shamir’'s Secret Sharing Key Shares 4

WHITE PAPER

The generated password uses the strings and secrets package

to generate a random ASCII 1024-bit password. Secrets is a more
appropriate method for generating random numbers than the random
package, since we want our generation to be cryptographically strong.
More information on the secrets package can be found here.

Next, the shares must be combined to recover the secret:

1. Take shares as input.
2. Output to STDOUT for use with further scripting

combine.py

import pexpect

def (threshold, shares, bitsize):
= f'ssss—-combine -t {threshold} -n {shares} -s {bitsize} -Q
combine = pexpect. (s)
for _ in (threshold):
share = ("Share:")

combine. (share)
output = combine. (). ('\r\n")[-2]
(output)

== " main__":
(3, 4, 1024)

The combine.py wrapper needs to be able to interact with ssss-combine
to input each share when requested. Use the package pexpect with the
method sendline to do this. Again, you supply the threshold (3), the total
number of shares (4) and the bitsize (1024). Also add the -Q flag to put
the tool in quiet mode. This makes it much easier for scripting as you'll
know exactly where the secret is printed.

This is equivalent to executing the following:
$ssss-combine -t 3 -n 4 -s 1024 -Q

It then takes the required threshold of shares as user input and outputs
the password to STDOUT. You can pipe this to your decryption tool for
further scripting while avoiding printing the password.

Distributed Security: Shamir’'s Secret Sharing Key Shares 5

https://docs.python.org/3/library/secrets.html

WHITE PAPER

Bringing It All Together

For encryption and decryption, you can use openssl. The following two
commands will allow you to pipe in output from your tool into openssl as
part of a scripting process.

Encrypt:

$openssl enc -aes-256-cbc -md sha512 -pbkdf2 -iter 100000 -salt -in secrets.
txt -out secrets.enc -pass stdin

Decrypt:

$openssl enc -d -aes-256-cbc -md sha512 -pbkdf2 -iter 100000 -salt -in
secrets.enc -out secrets.txt -pass stdin

Here is what the entire process looks like.

1. Create a recoverable password with split.py

$python3 ./split.py

zerolsevens-MBP:encrypt zerolseven$ python3 ./split.
7e66bc071d966356e5bfafa55b239efdeb1d48b14a7d5F Fb696dF17b9831976d72aad82c118bF9b25340c5573da38b7821296b74e45¢21953843Fecod37aa7ed12de99akte971a5F581ccdbeBal0577¢5196138e548b9F90a4bc183d6e28
cble1f10714524852666b91a1e50538¢21b816¢ Fh5c594d03
41a9007671c30745b139271b214F3950e548b8e35380d4d5e664658cdf 4be6df3d993cbb32bcc52c8007a3189a3732104979ea985c6222bbfO79bcb426dat2858469e faesT28ea3f2c1b31cdd5be54541854084
ecce527900671b2284eef74639907¢387c5a893¢268db8711c8dd3F7d07eabT

projectname-3-54c84f0a8257922ff3804e5ea3dfcocch8b2f857980982e20fbfb76c733e81bc16c8830bFO59bF7583febalaa7db54f5fce54430966b878540203ba63cd6dbbb509F94fes40fc1601dc28c7bsa7be5dae5aa613d3cabfeef31320c169333
464bd3eBécabebda7fedcéad870ece 62eab73f4dbed2a5118 de329a056524e21
projectname-4-0dbdc1df118376ab3d9823ec1f5c8627acccfabelf5b590£33d4f75cFe1b99e5b7598ab36634313007b50F5eb4205¢0c7c6016493812¢38b5F5d8b2c5c5aed23d73d4blbdaled1fac3a690f24345fefO04e5d92bd39605F6728e2d3fc82e78
2e88f7a722e654116c38557ecfcocd17f8fc585c31437eee3aatBBa3st711abco2l

2. Supply combine.py with the shares, then pipe the output to the encryption process
(openssl)

$python3 ./combine.py | openssl enc -aes-256-cbc -md sha512 -pbkdf2 -iter
100000 -salt -in secrets.txwt -out secrets.enc -pass stdin

zerolsevens-MBP:encrypt zerolseven$ python3 ./combine.py | openssl enc -aes-256-cbc -md sha512 -pbkdf2 —iter 106060 -salt —in secrets.txt -out secrets.enc -pass stdin
projectname-1-947e66bce71d96 bfafas5b239efdebld4Bbl4a7d5 fb696df17b983F976d72aad82c118bF9b2634005673da38b7821296b74e45¢21953843Fecd37aa7ed12de99ake971a5581ccdbeBal0577c5196138e548bF9F90a4bc183d6e28
773330f41be74c8cech4elf107145248! 66b91a1e50538c21b816cfb5c594d03

projectname-4-0dbdc1df118376ab3d9823ec1f5cB627acccfabelf5b590f33d4f76¢c felb99ebb7598ab36634313007b505eb4205¢0c7c6016493812c38b55d8b2c5cEaed23d73d4blbdaled1fac3a690124345fef004e5d92bd3960516728e2d3fc82e78
2e88f7a722e654116c38557ecfcbcd17f8fc585¢31437eee3aab88a34711abco21
projectnam 54c8470a82579221 F3804e50a3dfcocchBb2f857980F9826207hTb76c733e81bc16c8830bTO59bF7583 Febalaa7db54F5Tce54430966b878540203bab3cd6dbbb5e9f4Tess0fcl601dc28c7b4a7be5dae5aasl3d3cobfceff313a0c169333
464bd3eB6cabcsda7fedcsad87@ecef62eab73f4dbed2a5118 de3292056524e21

3. Decrypt the secret using combine.py and pipe the output to the decryption process.

$python3 ./combine.py | openssl enc -d -aes-256-cbc -md sha512 -pbkdf2 -iter
100000 -salt -in secrets.enc -out secrets.txt -pass stdin

encrypt zerolseven$ python3 ./combine.py | openssl enc -d —aes-256-cbc -md shabi2 —pbkdf2 —iter 108080 -salt —in secrets.enc —out secrets.txt -pass stdin
ad82c118bf! c5573da38b7821296b74e45c21963843 fec0d37aa7ed12de99ake971a5F581ccdbeBal0577c5196138e648bF9F90akbc183d6e28

ecb4e1f10714524852666b91a1e50538¢21b016¢ Fb! 3
f2ecca791cdd: 41a9087671¢30745b139271Fb214F39e50e548b835380d4d5e664658cdf4be6dF3d993cbb32bcc52¢8007a3189a3732F04979ea985¢6222bbfa79bcb426dat2858469e Fae5T28ea3f2c1b31cddSbe5454F854084

ecce527900671b2284eef74639967¢387c5a893¢268db8711cf8dd3F7d07ea6T
projectname-3-54c84f0a825f922f3804e5ea3dfcoccb8b2f857980982e20fbfb76c733e81bc16c8830bFO59b 7583 febalaa7db54f5fce54430966b878540203ba63cd6dbbb509f94fess0fc1601dc28c7bsa7be5dae5aa613d3cabfeeff31320c169333
464bd3eBécabe5da7fedcéadB70ecefb62eab73f4d4bed2a5118 de329a056524e21

zerolsevens-MBP:encrypt zerolseven$ 1s

combine.p secrets.enc secrets. txt

Distributed Security: Shamir's Secret Sharing Key Shares 6

WHITE PAPER

By using a wrapper and Shamir's Secret Sharing Scheme you now have a
base for scripting and can successfully hide the password from the user.
If you distribute the 4 keys to other users and the encrypted container,
then if any of them need the secrets they can simply combine their
share with two others and run the scripts above. The files remain secure
encrypted in AES 256, three of your users can collaborate and recover
the password when necessary, and the PK is never distributed. This
matches the original requirements you've set out for.

Copyright © 2022 Musarubra US LLC
re Ix JANUARY 2022

